Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Topics in Antiviral Medicine ; 31(2):148, 2023.
Article in English | EMBASE | ID: covidwho-2314215

ABSTRACT

Background: COVID-19 vaccines that expand immunity against emerging variants of concern (VOC) are needed to protect against ongoing viral evolution. We investigated the impact of boosting nonhuman primates pre-immune to the original WA-1 strain with updated VOC vaccines on the breadth and magnitude of mucosal and systemic antibody (Ab) and T cell (Tc) responses. Method(s): Cynomolgus macaques were primed with 2 doses of WA-1 Spike protein encoded by either an IL-12 adjuvanted DNA vaccine administered by gene gun (GG) or a self-amplifying RNA vaccine (repRNA) delivered intramuscularly (IM) with a cationic nanocarrier (LIONTM/IM, HDT Bio) or by GG (FIG 1). A booster dose was administered at week 17 with DNA or repRNA vaccines expressing B.1.351 (Beta) and B.1.617 (Delta) Spike receptor-binding domains (RBDs) fused to influenza HA2 stem domain (SHARP, designed by AIR/ JP) followed by a final Beta + Delta + WA-1 SHARP boost at week 34. Blood and bronchoalveolar lavages (BAL) were collected before and after each dose. Binding and neutralizing Ab to VOCs, including Omicron strains, were measured by ELISA and pseudovirus neutralization assays. Tc responses to Spike protein (WA-1 peptides) were measured by ELISpot. Immune responses were compared between groups and between blood vs lung using non-parametric statistical tests. Result(s): Two doses of WA-1 DNA or repRNA vaccines induced broad Ab against all VOC with the repRNA vaccine inducing the highest titers. Boosting with VOC SHARP significantly increased mucosal and systemic Ab responses against all VOCs tested including Omicron. After final boost, all groups had comparable binding and neutralization Ab titers and Tc responses regardless of method of delivery (GG or LIONTM/IM) or formulation (DNA or repRNA). Tc responses were significantly higher in the BAL vs PBMC after WA-1 Spike doses (p=0.0420) and VOC SHARP boosters (p=0.0009). Conclusion(s): The WA-1 strain primed for broad responses against VOCs that were significantly boosted with updated SHARP vaccines including responses against Omicron, even though this strain was not included in any dose. This suggests that sequential immunization with updated vaccines may broaden mucosal and systemic immunity against future VOCs. The repRNA vaccine initially induced the strongest responses, but there were no differences between RNA and DNA following additional booster doses, a result that supports development of a more cost-effective, room temperature stable DNA vaccine for worldwide boosters. (Figure Presented).

SELECTION OF CITATIONS
SEARCH DETAIL